Math 102

Krishanu Sankar

September 18, 2018

Announcements

- Diagnostic Test
 - See my email for more information
 - Online course switching closes today
- OSH Groups
 - Only one person submits the OSH for the whole group. (If you were in a group and your OSH graded didn't appear, let me know.)
 - If you want to work as a group for OSH 2, you will need to make the group again. And then again for OSH 3, etc...
 - If you had technical issues please let me know so that I can report them.
- Office hours will remain as-is

Last Time

Let f(x) be a function, and let x₀ be a number. The instantaneous rate of change of f(x) at x = x₀ is defined as the limit

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

The derivative of f(x), denoted by f'(x), is a new function defined by the property that, for any x₀,

 $f'(x_0) =$ instantaneous rate of change of f(x)at $x = x_0$

Goals Today

Limits

- Gain intuition about what $\lim_{x \to a} g(x)$ means
- How is $\lim_{x \to a} g(x)$ different from g(a)?
- In which cases are these are equal? (Continuity)
- If not, how do we compute the limit?

• The derivative f'(x)

- When does it exist?
- The graph of f'(x) vs. the graph of f(x)

Limits

Let g(x) be a function, and let a be a number.

 $\lim_{x \to a} g(x) = `The \textit{ limit of } g(x) \textit{ as } x \textit{ goes to } a.'$

Limits

Let g(x) be a function, and let a be a number.

 $\lim_{x \to a} g(x) = `The limit of g(x) as x goes to a.'$

Intuitively - imagine that you are drawing the graph of g(x). As your pencil moves towards x = a, what y-coordinate does it move towards?

This is best understood through some graphical examples.

 $\lim_{x \to a} g(x)$ - examples

In both of these cases, there are 'no surprises' as x tends towards a.

 $\lim_{x \to a} g(x) - examples$

In these two cases, the function g(x) is undefined at x = a. But $\lim_{x \to a} g(x)$ still exists.

 $\lim_{x \to a} g(x)$ - examples

In these two cases, the function g(x) is undefined at x = a AND the limit does not exist.

► It is possible that g(a) exists but lim g(x) does not.

$$g(x) = \begin{cases} 1 & x \ge 2 \\ -1 & x < 2 \end{cases}$$

► Question: Is it possible for g(a) and lim g(x) to both exist, but be unequal?

o

► It is possible that g(a) exists but lim g(x) does not.

$$g(x) = \begin{cases} 1 & x \ge 2\\ -1 & x < 2 \end{cases}$$

Question: Is it possible for g(a) and lim g(x) to both exist, but be unequal? (yes, example on board)

Continuity

We say that g(x) is continuous at a if the following three properties hold.

•
$$\lim_{x \to a} g(x)$$
 exists. • $g(a)$ is defined.
• $\lim_{x \to a} g(x) = g(a)$.

Intuition - when you're drawing the graph of y = g(x), you don't need to pick up your pencil at x = a.

Exercise: Calculate $\lim_{x\to -3} \frac{x^2+4x+3}{x+3}$. (Hint: divide out a common factor)

Exercise: Calculate $\lim_{x\to -3} \frac{x^2+4x+3}{x+3}$. (Hint: divide out a common factor)

$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3} = \lim_{x \to -3} \frac{(x + 1)(x + 3)}{x + 3}$$
$$= \lim_{x \to -3} (x + 1)$$
$$= -2$$

Exercise: Calculate $\lim_{x\to -3} \frac{x^2+4x+3}{x+3}$. (Hint: divide out a common factor)

$$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x + 3} = \lim_{x \to -3} \frac{(x + 1)(x + 3)}{x + 3}$$
$$= \lim_{x \to -3} (x + 1)$$
$$= -2$$

Question: What does the graph of $y = \frac{x^2+4x+3}{x+3}$ look like?

The derivative

Suppose that f(x) is a function which is continuous at a. Zoom in on the graph of the function at x = a...

> https://www.desmos.com/calculator/ wu6bcbuw21

The derivative

Suppose that f(x) is a function which is continuous at a. Zoom in on the graph of the function at x = a...

> https://www.desmos.com/calculator/ wu6bcbuw21

If the graph starts to look like a line as we zoom in, then the derivative f'(x) is well-defined at x = a. We say f(x) is differentiable at x = a.

Continuous, but not differentiable at x = a

If a function is differentiable, then it has to be continuous. But it's possible to be continuous and NOT differentiable. The phenomenom below is known as a cusp.

Question: True or False? If $\lim_{x\to a} f(x)$ exists, then f(x) is continuous at x = a.

Question: True or False? If f(x) is continuous at x = a, then f'(a) exists.

Question: True or False? If $\lim_{x\to a} f(x)$ exists, then f(x) is continuous at x = a. False.

Question: True or False? If f(x) is continuous at x = a, then f'(a) exists. False.

Question: Which of the following implies that f'(x) is defined at $x = x_0$?

(A)
$$f'(x)$$
 is differentiable at $x = x_0$.
(B) $\frac{f(x+h)-f(x)}{h}$ is continuous at $x = x_0$.
(C) $\frac{f(x_0+h)-f(x_0)}{h}$ is continuous at $h = 0$.
(D) $\frac{f(x_0+h)-f(x_0)}{h}$ is continuous at $x = x_0$.

Question: Which of the following implies that f'(x) is defined at $x = x_0$?

(A) f'(x) is differentiable at $x = x_0$. (B) $\frac{f(x+h)-f(x)}{h}$ is continuous at $x = x_0$. (C) $\frac{f(x_0+h)-f(x_0)}{h}$ is continuous at h=0. (D) $\frac{f(x_0+h)-f(x_0)}{h}$ is continuous at $x = x_0$. (Explanation on board)

 $f'(x_0)$ is defined as the limit

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Think of x_0 as a fixed number and h as a variable. Consider the function $g(h) = \frac{f(x_0+h)-f(x_0)}{h}$. Then we are precisely asking whether $\lim_{h\to 0} g(h)$ exists. (C) says that g(h) is continuous at h = 0, which is an even stronger statement and certainly implies that $\lim_{h\to 0} g(h)$ exists.

(credit to the person who pointed this out) (A) also is correct for the reason that if the derivative f'(x)is differentiable at $x = x_0$, then it has to be continuous at $x = x_0$. Then it has to have a value at $x = x_0$. The graph of y = f(x) vs. y = f'(x).

• Example (on board): f(x) = 3x.

► Exercise: If f(x) = |x|, sketch the graph of f'(x).

Answers

Note that g(x) = f'(x) in this case!

Recap

- ▶ g(a) vs. $\lim_{x \to a} g(x)$
- When the function is continuous at x = a, these are equal
- Calculating some limits
- Continuous vs. Differentiable
- Graph Sketching (intro)