## Math 102

Krishanu Sankar

## September 18, 2018

## Announcements

- Diagnostic Test
- See my email for more information
- Online course switching closes today
- OSH Groups
- Only one person submits the OSH for the whole group. (If you were in a group and your OSH graded didn't appear, let me know.)
- If you want to work as a group for OSH 2, you will need to make the group again. And then again for OSH 3, etc...
- If you had technical issues please let me know so that I can report them.
- Office hours - will remain as-is


## Last Time

- Let $f(x)$ be a function, and let $x_{0}$ be a number. The instantaneous rate of change of $f(x)$ at $x=x_{0}$ is defined as the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

- The derivative of $f(x)$, denoted by $f^{\prime}(x)$, is a new function defined by the property that, for any $x_{0}$,
$f^{\prime}\left(x_{0}\right)=$ instantaneous rate of change of $f(x)$

$$
\text { at } x=x_{0}
$$

## Goals Today

- Limits
- Gain intuition about what $\lim _{x \rightarrow a} g(x)$ means
- How is $\lim _{x \rightarrow a} g(x)$ different from $g(a)$ ?
- In which cases are these are equal? (Continuity)
- If not, how do we compute the limit?
- The derivative $f^{\prime}(x)$
- When does it exist?
- The graph of $f^{\prime}(x)$ vs. the graph of $f(x)$


## Limits

Let $g(x)$ be a function, and let $a$ be a number.

$$
\lim _{x \rightarrow a} g(x)=\text { 'The limit of } g(x) \text { as } x \text { goes to } a . '
$$

## Limits

Let $g(x)$ be a function, and let $a$ be a number.

$$
\lim _{x \rightarrow a} g(x)=\text { 'The limit of } g(x) \text { as } x \text { goes to } a . '
$$

Intuitively - imagine that you are drawing the graph of $g(x)$. As your pencil moves towards $x=a$, what $y$-coordinate does it move towards?

This is best understood through some graphical examples.

## $\lim g(x)$ - examples $x \rightarrow a$

- $\lim _{x \rightarrow 3}\left(x^{2}-2\right)=7$

- $\lim _{x \rightarrow 1} \frac{1}{x+2}=\frac{1}{3}$


In both of these cases, there are 'no surprises' as $x$ tends towards $a$.

## $\lim g(x)$ - examples $x \rightarrow a$

- $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=\frac{1}{2}$

- $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$


In these two cases, the function $g(x)$ is undefined at $x=a$. But $\lim _{x \rightarrow a} g(x)$ still exists.

## $\lim g(x)$ - examples $x \rightarrow a$

- $\lim _{x \rightarrow 3} \frac{1}{x-3}$ does not exist.
- $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.


In these two cases, the function $g(x)$ is undefined at $x=a$ AND the limit does not exist.

## $\lim _{x \rightarrow a} g(x)$ - examples

- It is possible that $g(a)$ exists but $\lim _{x \rightarrow a} g(x)$ does not.

$$
g(x)= \begin{cases}1 & x \geq 2 \\ -1 & x<2\end{cases}
$$



- Question: Is it possible for $g(a)$ and $\lim _{x \rightarrow a} g(x)$ to both exist, but be unequal?


## $\lim _{x \rightarrow a} g(x)$ - examples

- It is possible that $g(a)$ exists but $\lim _{x \rightarrow a} g(x)$ does not.

$$
g(x)= \begin{cases}1 & x \geq 2 \\ -1 & x<2\end{cases}
$$



- Question: Is it possible for $g(a)$ and $\lim _{x \rightarrow a} g(x)$ to both exist, but be unequal? (yes, example on board)


## Continuity

We say that $g(x)$ is continuous at $a$ if the following three properties hold.

- $\lim _{x \rightarrow a} g(x)$ exists. $\quad g(a)$ is defined.
- $\lim _{x \rightarrow a} g(x)=g(a)$.

Intuition - when you're drawing the graph of $y=g(x)$, you don't need to pick up your pencil at $x=a$.

## $\lim g(x)$ - examples <br> $x \rightarrow a$

Exercise: Calculate $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x+3}$. (Hint: divide out a common factor)

## $\lim g(x)$ - examples $x \rightarrow a$

Exercise: Calculate $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x+3}$. (Hint: divide out a common factor)

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x+3} & =\lim _{x \rightarrow-3} \frac{(x+1)(x+3)}{x+3} \\
& =\lim _{x \rightarrow-3}(x+1) \\
& =-2
\end{aligned}
$$

## $\lim g(x)$ - examples $x \rightarrow a$

Exercise: Calculate $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x+3}$. (Hint: divide out a common factor)

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x+3} & =\lim _{x \rightarrow-3} \frac{(x+1)(x+3)}{x+3} \\
& =\lim _{x \rightarrow-3}(x+1) \\
& =-2
\end{aligned}
$$

Question: What does the graph of $y=\frac{x^{2}+4 x+3}{x+3}$ look like?

## The derivative

- Suppose that $f(x)$ is a function which is continuous at $a$. Zoom in on the graph of the function at $x=a \ldots$


## https://www.desmos.com/calculator/ wu6bcbuw2l

## The derivative

- Suppose that $f(x)$ is a function which is continuous at $a$. Zoom in on the graph of the function at $x=a \ldots$


## https://www.desmos.com/calculator/ wu6bcbuw21

- If the graph starts to look like a line as we zoom in, then the derivative $f^{\prime}(x)$ is well-defined at $x=a$. We say $f(x)$ is differentiable at $x=a$.


## Continuous, but not differentiable at

 $x=a$If a function is differentiable, then it has to be continuous. But it's possible to be continuous and NOT differentiable. The phenomenom below is known as a cusp.


Question: True or False? If $\lim _{x \rightarrow a} f(x)$ exists, then $f(x)$ is continuous at $x=a$.

Question: True or False? If $f(x)$ is continuous at $x=a$, then $f^{\prime}(a)$ exists.

Question: True or False? If $\lim _{x \rightarrow a} f(x)$ exists, then $f(x)$ is continuous at $x=a$. False.

Question: True or False? If $f(x)$ is continuous at $x=a$, then $f^{\prime}(a)$ exists. False.

Question: Which of the following implies that $f^{\prime}(x)$ is defined at $x=x_{0}$ ?
(A) $f^{\prime}(x)$ is differentiable at $x=x_{0}$.
(B) $\frac{f(x+h)-f(x)}{h}$ is continuous at $x=x_{0}$.
(C) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ is continuous at $h=0$.
(D) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ is continuous at $x=x_{0}$.

Question: Which of the following implies that $f^{\prime}(x)$ is defined at $x=x_{0}$ ?
(A) $f^{\prime}(x)$ is differentiable at $x=x_{0}$.
(B) $\frac{f(x+h)-f(x)}{h}$ is continuous at $x=x_{0}$.
(C) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ is continuous at $h=0$.
(D) $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ is continuous at $x=x_{0}$.
(Explanation on board)
$f^{\prime}\left(x_{0}\right)$ is defined as the limit

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Think of $x_{0}$ as a fixed number and $h$ as a variable. Consider the function $g(h)=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$. Then we are precisely asking whether $\lim _{h \rightarrow 0} g(h)$ exists. (C) says that $g(h)$ is continuous at $h=0$, which is an even stronger statement and certainly implies that $\lim _{h \rightarrow 0} g(h)$ exists.
(credit to the person who pointed this out) (A) also is correct for the reason that if the derivative $f^{\prime}(x)$ is differentiable at $x=x_{0}$, then it has to be continuous at $x=x_{0}$. Then it has to have a value at $x=x_{0}$.

## The graph of $y=f(x)$ vs. $y=f^{\prime}(x)$.

- Example (on board): $f(x)=3 x$.
- Exercise: If $f(x)=|x|$, sketch the graph of $f^{\prime}(x)$.

Match $y=f(x)$ to $y=f^{\prime}(x)$ !







## Answers

$$
\begin{array}{c|c|c}
f^{\prime}(x) & g^{\prime}(x) & f(x) \\
h(x) & g(x) & h^{\prime}(x)
\end{array}
$$

Note that $g(x)=f^{\prime}(x)$ in this case!

## Recap

- $g(a)$ vs. $\lim _{x \rightarrow a} g(x)$
- When the function is continuous at $x=a$, these are equal
- Calculating some limits
- Continuous vs. Differentiable
- Graph Sketching (intro)

